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Abstract

Large language models (LLMs) have proven effective for

layout generation due to their ability to produce structured

description, such as HTML. In this paper, we argue that

their limitation in visual understanding leads to insufficient

performance in tasks requiring visual content, e.g., content-

aware layout generation. Therefore, we explore whether

large vision-language models (LVLMs) can be applied to

content-aware layout generation and propose the training-

free Visual-Aware Self-Correction LAyout GeneRation

(VASCAR), taking inspiration from the iterative revision

of designers. VASCAR enables LVLMs (e.g., GPT-4o and

Gemini) iteratively refine their outputs with reference to lay-

out rendered layout images. Extensive experiments and user

study demonstrate VASCAR’s effectiveness and versatility,

achieving state-of-the-art (SOTA) layout generation quality.

1. Introduction

Content-aware layout generation involves creating lay-

out designs (e.g., posters [4], [7] and magazines [9], [31])

based on given visual content [16], [25]. While various ap-

proaches [2], [6], [7], [11], [35] have been proposed to auto-

mate this process, it still remains difficult due to the scarcity

of high-quality annotated datasets. Also, they often lack

human-like iterative refinement and typically require man-

ual adjustments to meet design standards [8], [15].

Recent advances in large language models (LLMs) have

demonstrated strong capabilities in layout generation [24],

[28]. Proprietary LLMs can generate layouts via in-context

learning (ICL)[1], achieving high performance with limited

annotated samples and without fine-tuning[14]. However,

challenges remain: (1) effectively incorporating visual con-

tent to enhance generation and (2) ensuring aesthetic quality

in both subjective and objective evaluations. Inspired by

large vision-language models (LVLMs) that can assess de-

sign quality [5], and by the iterative revision and heuristic-

guided processes used by human designers [13], [18], [19],

the proposed framework, VASCAR (Visual-Aware Self-
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Correction Layout Generation), aims to mimic such work-

flows in a multi-modal and training-free manner.

VASCAR introduces an iterative, self-refining layout

generation process where rendered layouts act as visual

prompts [30], [32]. Using a canvas as a query and a

few multi-modal ICL examples, LVLMs generate HTML-

formatted layout candidates. These are evaluated through

a layout scorer and refined based on suggestions derived

from design heuristics [29], enabling autonomous improve-

ment through multiple iterations [33]. Experiments on two

datasets [7], [35] show that VASCAR surpasses both gener-

ative and LLM-based methods in content-based metrics and

achieves competitive layout FID [10], validating its effective-

ness in content-aware layout generation.

2. Method
Figure 1 shows an overview of VASCAR. To achieve

iterative self-corrective layout generation with an LVLM,

our pipeline is based of the novel visual-aware self correc-

tion, which consists our key contribution. In each step,

LVLM-based layout generation and refinement are per-

formed. VASCAR consists of layout generator to generate

the initial layouts, prompt optimizer to evaluate the lay-

outs based on automatic criteria and construct the next-step

prompts, and ICL retriever to identify multiple exemplars

that serve as potential design constraints.

Task Definition Let xq denote the input canvas on which

we generate a layout, and D = {(x,y)} the dataset of

pairs of a canvas x and corresponding annotated layout y,

where |D| = N . The canvas x may be an image of a prod-

uct but without any visual layout elements. A layout is a

set of annotations where to put visual elements in a can-

vas, i.e., y = {e} where |y| = K and each visual element

e = (c, l, t, w, h) is represented by its element type c(e.g.,

logo, text, and underlay) and the bounding box. VASCAR

generates a layout yq for xq with referring to a subset of D
identified by the ICL retriever.

2.1 Visual-Aware Self-Correction

Visual-aware self-correction refers to our overall pipeline

that first generates layouts on the query canvas, and refines

the layouts iteratively with visual feedback. First, we in-

troduce a unified notation for prompt-based generation and

refinement with an LLM or LVLM by Yq = G(xq, Y ; p),

where G(·) represents the generator, xq denotes the input
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In-context Learning Retriever Prompt Optimizer

Dataset ICL Retriever

HTML HTML HTML HTML

+ + + +

Content Constraint: left 21px, top 56px, width 59px, height 67px
Element Type Constraint: text 0 | text 1 | underlay 2
<html>
<body>
<div class="text" style="index: 0; left: 6px; top: 11px; width: 88px; height: 22px"></div>
<div class="text" style="index: 1; left: 29px; top: 38px; width: 43px; height: 7px"></div>
<div class="underlay" style="index: 2; left: 24px; top: 35px; width: 52px; height: 13px">
</div>
</body>
</html>

Saliency
map

Query

Input Initial
Prompt with

ICL examples Generate a new layout

HTML HTML HTML HTML HTML

Output Candidate

timesrepeat

Large Vision-
Language Model

(LVLM)

Rendering the
generated bboxes Final Output

(Initial Prompt)
Here are the generated
results of query image:

{HTML}

The score is:
0.9036

Please refine the layout
following the instruction
below:
(suggestion)
- Reduce the occlusion
between content
constraint areas and
layout elements.

Reduce the occlusion
of main content

Suggester

Apply self-correction Optimized Prompt

The score is:
0.9036

Layout Scorer

Fig. 1 An overview of VASCAR, an LVLM-based self-correction pipeline.

canvas, Y denotes the current state of layouts under refine-

ment if provided, and p denotes a prompt text that instructs

the model to generate or refine layouts. The output Yq is a

set of layouts each of whose elements is denoted by yq, since

a generator may output multiple candidates of layouts per

call. In the initial layout generation, p0, the default prompt

instructs the model to generate layouts from scratch. To

iteratively refine the layouts with self-feedback, the same

LLM or LVLM used for generation can be employed by sim-

ply switching the prompt to a refinement mode as

Y 0
q = G(xq, ∅; p0) (1)

Y i
q = G(xq, Y

i−1
q ; p(Y i−1

q )) (i = 1, 2, 3, ..., I), (2)

where Y i
q denotes layouts generated in the i-th iteration.

The prompt p(Y i−1
q ) is a refinement prompt that is condi-

tioned by the previous state Y i−1
q . To indicate the absence

of the previous-step layouts, we explicitly use an empty set

∅. We construct refinement prompts by modifying the de-

fault prompt with additional instructions and the previous

states of the generated layouts.

In constructing the function G with an LVLM, we need

to leverage its ability to access layout aesthetics by directly

feeding a rough proxy of the resulting design with visual el-

ements being given as their bounding boxes [5]. We propose

to feed these proxies, referred to as rendered images, to the

LVLM to provide richer cues for better layouts. A rendered

image is generated by placing bounding boxes of each ele-

ment type with different colors, denoted by z(x,y). Most

LVLMs accept a text prompt combined with multiple im-

ages, and we can concretize the function G using an LVLM

with a capacity for visual feedback by

G(xq, Y ; p) = LVLM({z(xq,yq)|yq ∈ Y }, p), (3)

where LVLM(V, t) denotes an LVLM viewed as a function

that maps a pair of image set V and prompt text t on the

output layout candidates.

Positive reinforcement in candidate-set feedback has been

shown to be beneficial [29] by keeping high-score examples

for better results. Therefore, we select the top-5 layout from

candidate pool using a scoring function v(yq) from Yq and

discard the others to create the reference samples for the

multi-modal optimized prompt. The initial prompt is also

added into the multi-modal optimized prompt, as the LVLM

needs to generate a parsable HTML layout. We perform self-

correction for I iterations by modifying the samples in the

multi-modal optimized prompt, mimicking a designer ’s it-
erative process, and select the layout with the highest score

among Y I
q as the final output.

2.2 Prompt Strategy for Layout Generator

We construct our layout generator by a frozen LVLM en-

hanced with ICL [17], [23], [26], [34], incorporating a small

subset of the training set into the prompts. We select sam-

ples with saliency maps [20], [21] similar to that of the query

following [14]. Given an input xq, we extract a small subset

from the training set, denoted as S(xq) whose size is M .

These examples serve as ICL exemplars, allowing the layout

generator to generate a layout yq w.r.t. xq and S(xq). The

prompt p0 consists of (i) instructions for generating a lay-

out, (ii) the input image xq, (iii) its saliency map sq, (iv)

rendered image z of each ICL example in S, (v) saliency

map s of each ICL example, and (vi) the corresponding lay-

out y. Following [14], the saliency map is represented as a

bounding box. Taking sq as an example, it can be repre-

sented by a serialized bounding box (lq, tq, wq, hq), and is

encoded into a textual format through the transformation

Es, i.e., Es(sq) = “left lq px, top tq px,

width wq px, height hq px.”. With this default initial

prompt p0, the LVLM generates multiple layouts Y 0
q , where

different layouts can be generated by properly setting the

temperature of the LVLM. Additionally, we reuse the ren-

dered images defined in eq. (3) for ICL samples to ex-

ploit LVLMs’ multi-modal ability. All rendered images from

S(xq) and the input image xq are fed into the LVLM

alongside the rendered images for visual feedback. In self-

correction, refinement prompts p(Yq) follow the same struc-

ture as the initial prompt but differ in that they include the

previous layout candidates, combined with textual refine-

ment suggestion as described in section 2.3, in addition to
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the ICL examples. The examples of real prompts can be

found in Appendix.

2.3 Multi-modal Prompt Optimizer

LVLMs’ capability to access the suitability and aesthetics

of generated layout is strong but still limited compared to

fine-tuned models [24]. To complement this, we propose a

multi-modal prompt optimizer inspired by [29], and design-

ers who iteratively create appropriate layouts for specific

contexts and refine them based on guidelines [3], [13]. Our

optimizer consists of a layout scorer to evaluate the gener-

ated layout and a suggester to guide the LVLM in making

effective adjustments.

The layout scorer uses multiple layout evaluation metrics

(detailed in section 3.1). Each metric is normalized to [0,

1], where the larger value means better. Let M be the set

of the criteria, and fm(xq) gives the normalized score of yq

for criterion m ∈ M. The fused score is given by:

v(yq) =
∑

m∈M
λm · fm(yq), (4)

where λm ∈ λ is an empirically determined weight.

The fused score v(yq) informs the layout generator of the

quality yq , but it does not tell which aspects are good

and which are not. Therefore, the suggester indicates this

w.r.t. the individual metrics fm. If it falls below a preset

threshold, an additional instruction text is added, indicating

the adjustment direction (e.g., “Reduce the overlap.”). The

threshold θm is set to the average of each evaluation metric

across the ICL examples in S(sq), i.e.,

θm =
1

|S(xq)|
∑

y∈S(xq)

fm(y). (5)

The additional prompts from the layout scorer and sug-

gester are then appended to the instruction in the refinement

prompt p(Y i
q ).

3. Experiments

3.1 Experimental Setup
Datasets. We use two e-commerce poster layout datasets:

PKU [7] and CGL [35], which contain visual elements like

logo, text, underlay, and embellishment (CGL only). PKU

has 9,974 annotated and 905 unannotated posters, while

CGL contains 60,548 annotated and 1,000 unannotated

posters. Following prior work [6], [7], [35], we use an in-

painting model [27] to create image-layout pairs and adopt

RALF ’s split [6] for fair evaluation. ICL examples are re-

trieved from training data only. We compare VASCAR with

task-specific models: CGL-GAN [35], RALF [6]; LLM-based

methods: LayoutPrompter [14], PosterLlama [24]; and Real

Data (ground-truth). LayoutPrompter and PosterLlama

were reproduced under our setup for fair comparison.

Evaluation Metrics. Following prior works [6], [7], we

adopt metrics from two perspectives: Content metrics evalu-

ate the harmony between the generated layout y and image

x: Occlusion (Occ ↓): overlap between main visual (sq) and

layout elements. Unreadability (Rea ↓): spatial gradient

Initial 𝐼 = 1 𝐼 = 5
Layout

PrompterRALF 𝐼 = 15Autoreg

Logo Text Underlay

VASCARBaselines

Fig. 2 Visual comparison of baselines and VASCAR with differ-
ent values of I.

within text regions. Graphic metrics assess layout structure

regardless of visual content: Overlay (Ove ↓): average IoU

across elements (excluding underlay). Non-alignment (Align

↓): spatial misalignment [12]. Underlay Effectiveness (Und

↑): ratio of valid underlay coverage. FID (Fréchet Inception

Distance ↓): layout distribution similarity [10].

Implementation Details. LVLMs include gpt-4o and

gemini-1.5-flash. We use 10 ICL examples, generate 5

layout candidates, and apply self-correction for 15 (Gemini)

and 5 (GPT-4o) iterations. We set the evaluation criteria for

the prompt optimizer as M = {Occ,Rea,Ove,Align,Und},
and the weights λ = {0.4, 0.4, 0.1, 0, 0.1}.

3.2 Input-unconstrained Generation

We follow the experimental setup of RALF [6] to evaluate

VASCAR on the input-unconstrained generation task (ta-

ble 1). On PKU, VASCAR outperforms all baselines across

nearly all metrics, even surpassing fine-tuned models. In

CGL, it also achieves competitive results on Rea, Ove, and

Und. However, we observe a degradation in FID, which

we attribute to varying self-correction needs across samples

―simple cases converge early, while excessive corrections in

complex cases may lead to overfitting to the suggester’s feed-

back, diverging from the true layout distribution.

Qualitative Comparison. Figure 2 shows the visual

comparison of several baselines including Autoreg, RALF,

and LayoutPrompter vs. our VASCAR across different self-

correction I including Initial i.e.I = 0. We confirm that

VASCAR can generate well-arranged layouts avoiding over-

lapping and occluding the main content. VASCAR’s results

improve progressively with iterations.

Trends of each metric. As shown in fig. 3, all metrics

improve as the number of self-correction iterations increases,

except for FID.

Human evaluation. To further demonstrate the effec-

tiveness of VASCAR, we conducted a user study on the PKU

test split. comparing it against strong baselines: RALF [6],

LayoutPrompter [14], and Initial. We invited 15 partici-

pants to evaluate 30 groups, selecting one preferred choice

from each group. The user study results, based on vot-

ing percentages, are shown in fig. 4. VASCAR outperforms

other baselines significantly according to human evaluation.
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PKU CGL

Method Training-free Content Graphic Content Graphic

Occ ↓ Rea ↓ Align ↓ Und ↑ Ove ↓ FID↓ Occ ↓ Rea ↓ Align ↓ Und ↑ Ove ↓ FID↓

Real Data - 0.112 0.0102 0.0038 0.99 0.0009 1.58 0.125 0.0170 0.0024 0.98 0.0002 0.79

CGL-GAN [35] 7 0.138 0.0164 0.0031 0.41 0.0740 34.51 0.157 0.0237 0.0032 0.29 0.1610 66.75
RALF [6] 7 0.119 0.0128 0.0027 0.92 0.0080 3.45 0.125 0.0180 0.0024 0.98 0.0040 1.32
PosterLlama† [24] 7 – – – – – – 0.154 0.0135 0.0008 0.97 0.0030 2.21
LayoutPrompter† [14] ✓ 0.220 0.0169 0.0006 0.91 0.0003 3.42 0.251 0.0179 0.0004 0.89 0.0002 4.59
VASCAR (GPT-4o) ✓ 0.129 0.0091 0.0002 0.99 0.0002 3.14 0.141 0.0102 0.0005 0.99 0.0002 5.69
VASCAR (Gemini) ✓ 0.113 0.0117 0.0013 0.98 0.0003 3.34 0.125 0.0122 0.0010 0.98 0.0007 6.27

Table 1 Unconstrained generation results on the PKU and CGL test split. † shows our
reproduced results based on the RALF split [6].

PKU CGL

Content Graphic Content Graphic

Method Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓ Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓

Real Data 0.112 0.0102 0.99 0.0009 1.58 0.125 0.0170 0.98 0.0002 0.79

C → S + P
RALF 0.124 0.0138 0.90 0.0100 2.21 0.126 0.0180 0.97 0.0060 0.50
VASCAR (GPT-4o) 0.117 0.0094 1.00 0.0002 3.01 0.139 0.0099 0.99 0.0002 4.86
VASCAR (Gemini) 0.107 0.0100 0.99 0.0003 2.82 0.123 0.0111 0.98 0.0005 5.51

C + S → P
RALF 0.125 0.0138 0.87 0.0100 0.62 0.128 0.0185 0.96 0.0060 0.21
VASCAR (GPT-4o) 0.123 0.0117 0.90 0.0009 1.11 0.140 0.0132 0.88 0.0003 1.67
VASCAR (Gemini) 0.104 0.0107 0.88 0.0018 2.21 0.122 0.0123 0.85 0.0028 2.39

Completion
RALF 0.120 0.0140 0.88 0.0120 1.58 0.126 0.0185 0.96 0.0050 1.04
VASCAR (GPT-4o) 0.120 0.0063 1.00 0.0004 6.19 0.137 0.0068 0.99 0.0005 5.57
VASCAR (Gemini) 0.119 0.0097 0.99 0.0006 4.74 0.135 0.0098 0.98 0.0009 5.18

Refinement
RALF 0.113 0.0109 0.95 0.0040 0.13 0.126 0.0176 0.98 0.0020 0.14
VASCAR (GPT-4o) 0.108 0.0072 0.99 0.0005 1.18 0.125 0.0091 0.95 0.0008 0.59
VASCAR (Gemini) 0.104 0.0095 0.97 0.0010 0.32 0.114 0.0096 0.96 0.0013 0.37

Relationship
RALF 0.122 0.0141 0.85 0.0090 2.23 0.126 0.0184 0.95 0.0060 0.55
VASCAR (GPT-4o) 0.151 0.0139 0.92 0.0011 1.94 0.153 0.0139 0.91 0.0004 2.61
VASCAR (Gemini) 0.119 0.0117 0.96 0.0008 2.00 0.132 0.0123 0.95 0.0011 3.72

Table 2 Quantitative result of five constrained generation tasks on the
PKU and CGL test splits.

Fig. 3 The trends of each metric based on I.

Fig. 4 User study results on PKU test split.

3.3 Input-constrained Generation

We evaluated VASCAR on the five input-constrained gen-

eration tasks followed by [6]: Category → Size + Po-

sition (C → S + P) task specifies the category and the

number of visual elements to place. Category + Size →
Position (C + S→P) specifies the size of elements. Com-

pletion refers to a task where the model is given all infor-

mation about partial element (including category, size, and

position) and asked to complete the layout. Refinement

represents the task of improving a perturbed layout, which is

generated by adding Gaussian noise of mean 0 and variance

1 to the ground-truth layout [22]. Relationship specifies

the positional and size relationships between elements. We

adopt a text prompt preprocessing strategy inspired by [14],

enabling VASCAR to effectively address content-aware lay-

out generation tasks. VASCAR achieves strong performance

across various input-constrained generation tasks (table 2).

Although VASCAR shows slightly higher FID scores than

RALF in some tasks, this is likely due to the layout scorer’s

weighting λm, which emphasizes Occ and Rea, potentially

increasing the distributional distance from the ground-truth

layouts. Nonetheless, VASCAR consistently outperforms

others in content-related metrics, reinforcing its strength in

generating appealing designs.

Content Graphic

Setting Occ ↓ Rea ↓ Align ↓ Und ↑ Ove ↓ FID↓

Rendered Image (Ours) 0.1304 0.0134 0.0017 0.97 0.0012 2.13

Text-only 0.1529 0.0153 0.0024 0.97 0.0009 1.91

Saliency Map 0.1356 0.0140 0.0023 0.97 0.0009 1.69
Inpainting Image 0.1312 0.0137 0.0022 0.98 0.0004 2.37
Original Poster 0.1315 0.0134 0.0023 0.98 0.0006 2.34

Table 3 Multi-modal analysis for VASCAR on PKU.

3.4 Ablation Study

The impact of multi-modal input. We argue that the

visual content determines the performance of layout gen-

eration model. Therefore, we compared using only text

input and different types of image input (the same image

type was also used in self-correction). Table 3 shows that

using only text input shows a significant gap in content

metrics compared to multi-modal input. Regarding differ-

ent image types, rendered images achieved the best per-

formance in content metrics and comparable performance

in graphic metrics, demonstrating that rendered images en-

hance LVLMs’ ability to generate layouts effectively.

4. Conclusion
This paper introduces VASCAR, a novel training-free

framework for content-aware layout generation that utilizes

LVLMs through a visual-aware self-correction mechanism

like a designer. The method iteratively refines layouts by

incorporating feedback from both rendered visual contents

and automatic metrics, improving layout quality without

additional training. Extensive experiments and user study

demonstrate that VASCAR excels in generating high-quality

layouts and adapts well to different datasets and different

LVLMs, offering a versatile solution for content-aware lay-

out generation tasks.
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