-
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
1. どんなもの?過学習はDeep neural networkの学習における課題の1つであり、汎化性能を向上させるためにさまざまな正則化手法が提案されてきた。中でも学習中にHidden unitに対してノイズを乗せるDropoutは有名な正則化手法として知られているが、こうした正則化手法がなぜ効果があるのかは不明である。本研究では従来のノイズ付加による正則化手法が真の目的関数の下限に対して最適化すること、Stochastic gradient descentにおいて、より制約の強い下限に...
-
Few-Shot Adversarial Domain Adaption
1. どんなもの?本研究ではDeepモデルを用いた教師ありのドメイン適応の問題に対して対処するフレームワークを提案している。主なアイディアは埋め込み表現を学習する際にAdversarialな学習を導入し、2つの異なるドメインの特徴を保持するように埋め込みつつ、同時に埋め込み表現が意味をなすように配置させるところである。教師ありタスクの場合、一般的には大量のラベル付与済みデータが必要であるが、ラベルを付与すべきデータが少なく済むことでより扱いやすい問題となる。こういったFew-shotな学習...
-
DropoutNet: Addressing Cold Start in Recommender Systems
1. どんなもの?潜在的な意味を捉えるモデルは、精度の良さやスケーラビリティを有するため、レコメンドシステムを導入する際にデフォルトの選択肢の1つとなっている。しかしながらレコメンドといった分野の先行研究では、主にユーザーとアイテムの関係をモデル化したものが多く、データが少ない場合に起こる「コールドスタート問題」に対する解決策を提示しているモデルは少ない。Deep learningは近年様々な入力に対して優れた成功を収めている。そういったモデルを利用し、レコメンドシステムにおけるコールドス...