画像生成 AI 入門: Python による拡散モデルの理論と実践#

Open In Colab

Section 07. Play with Diffusion Model#

Stable Diffusion を中心とした拡散モデルを用いて、最先端の画像生成技術を実際に動かして実践していきます。

Lecture 27. Paint-by-example#

Paint-by-example [Yang+ CVPR'23] を用いてオリジナル画像に対して編集領域となるマスク画像と参照画像から画像編集を実現します。

セットアップ#

GPU が使用できるか確認#

本 Colab ノートブックを実行するために GPU ランタイムを使用していることを確認します。CPU ランタイムと比べて画像生成がより早くなります。以下の nvidia-smi コマンドが失敗する場合は再度講義資料の GPU 使用設定 のスライド説明や Google Colab の FAQ 等を参考にランタイムタイプが正しく変更されているか確認してください。

!nvidia-smi
Sat Jul 22 13:09:57 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.105.17   Driver Version: 525.105.17   CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   35C    P8     9W /  70W |      0MiB / 15360MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

利用する Python ライブラリをインストール#

diffusers ライブラリをインストールすることで拡散モデルを簡単に使用できるようにします。diffusers ライブラリを動かす上で必要となるライブラリも追加でインストールします:

  • transformers: 拡散モデルにおいて核となる Transformer モデルが定義されているライブラリ

  • accelerate: transformers と連携してより高速な画像生成をサポートするライブラリ

!pip install diffusers==0.16.1
!pip install transformers accelerate
Collecting diffusers==0.16.1
  Downloading diffusers-0.16.1-py3-none-any.whl (934 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 934.9/934.9 kB 13.9 MB/s eta 0:00:00
?25hRequirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from diffusers==0.16.1) (8.4.0)
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from diffusers==0.16.1) (3.12.2)
Collecting huggingface-hub>=0.13.2 (from diffusers==0.16.1)
  Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 268.8/268.8 kB 30.1 MB/s eta 0:00:00
?25hRequirement already satisfied: importlib-metadata in /usr/lib/python3/dist-packages (from diffusers==0.16.1) (4.6.4)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from diffusers==0.16.1) (1.22.4)
Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from diffusers==0.16.1) (2022.10.31)
Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from diffusers==0.16.1) (2.27.1)
Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.13.2->diffusers==0.16.1) (2023.6.0)
Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.13.2->diffusers==0.16.1) (4.65.0)
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.13.2->diffusers==0.16.1) (6.0.1)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.13.2->diffusers==0.16.1) (4.7.1)
Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.13.2->diffusers==0.16.1) (23.1)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->diffusers==0.16.1) (1.26.16)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->diffusers==0.16.1) (2023.5.7)
Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->diffusers==0.16.1) (2.0.12)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->diffusers==0.16.1) (3.4)
Installing collected packages: huggingface-hub, diffusers
Successfully installed diffusers-0.16.1 huggingface-hub-0.16.4
Collecting transformers
  Downloading transformers-4.31.0-py3-none-any.whl (7.4 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.4/7.4 MB 60.2 MB/s eta 0:00:00
?25hCollecting accelerate
  Downloading accelerate-0.21.0-py3-none-any.whl (244 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 244.2/244.2 kB 25.2 MB/s eta 0:00:00
?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2)
Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.16.4)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.22.4)
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)
Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2022.10.31)
Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.27.1)
Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers)
  Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.8/7.8 MB 108.1 MB/s eta 0:00:00
?25hCollecting safetensors>=0.3.1 (from transformers)
  Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 54.1 MB/s eta 0:00:00
?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.65.0)
Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate) (5.9.5)
Requirement already satisfied: torch>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (2.0.1+cu118)
Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (2023.6.0)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.7.1)
Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (1.11.1)
Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1.2)
Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2.0.0)
Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.10.0->accelerate) (3.25.2)
Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.10.0->accelerate) (16.0.6)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (1.26.16)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.5.7)
Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.12)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.10.0->accelerate) (2.1.3)
Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.10.0->accelerate) (1.3.0)
Installing collected packages: tokenizers, safetensors, transformers, accelerate
Successfully installed accelerate-0.21.0 safetensors-0.3.1 tokenizers-0.13.3 transformers-4.31.0

Paint-by-example を扱うパイプラインを構築#

本セクションでは PaintByExamplePipeline を使用して Paint-by-example パイプラインの動作を確認します。

まず準備として画像を複数生成した場合に結果を確認しやすいように、画像をグリッド上に表示する関数を以下のように定義します。この関数は 🤗 Hugging Face Stable Diffusion のブログ記事のものを利用しています。

from typing import List
from PIL import Image
from PIL.Image import Image as PilImage

def image_grid(imgs: List[PilImage], rows: int, cols: int) -> PilImage:
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid

動作確認のため Paint-by-example の本家レポジトリから元画像・マスク画像・参照画像の 3 つをダウンロードしてきます。今回はバケツの中に可愛い黒いわんちゃんを、パンダに変えてみようと思います。

from diffusers.utils import load_image

init_image = load_image("https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/image/example_1.png")
mask_image = load_image("https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/mask/example_1.png")
example_image = load_image("https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/reference/example_1.jpg")

# ダウンロードした画像をそれぞれ 512 x 512 へリサイズしておきます
resize_size = (512, 512)
init_image = init_image.resize(resize_size)
mask_image = mask_image.resize(resize_size)
example_image = example_image.resize(resize_size)

image_grid([init_image, mask_image, example_image], rows=1, cols=3)
../_images/51f85eed94d28de343069002dc2fa9b22d0ba9078f4c6b97fbf72d583527506d.png

PaintByExamplePipeline を用いて、学習済みの Fantasy-Studio/Paint-by-Example を読み込みます。

import torch
from diffusers import PaintByExamplePipeline

model_id = "Fantasy-Studio/Paint-by-Example"
pipe = PaintByExamplePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
unet/diffusion_pytorch_model.safetensors not found
You are using a model of type clip_vision_model to instantiate a model of type clip. This is not supported for all configurations of models and can yield errors.

読み込んだパイプラインに対して、元画像 init_image、マスク画像 mask_image、参照画像 example_image を渡して画像を編集してみます。

edited_image = pipe(
    image=init_image,
    mask_image=mask_image,
    example_image=example_image,
).images[0]

image_grid([init_image, mask_image, edited_image], rows=1, cols=3)
../_images/e67c6aef36a96fa6989f50e3c8dda57c2152a1c558149f6de6051189b0a9c295.png

以上のようにして、黒いわんちゃんの部分がパンダへと編集することができました。

次はわんちゃんの画像をねこちゃんに変化させてみましょう。以下のようにして使用する画像群をダウンロードします。

from diffusers.utils import load_image

init_image = load_image("https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/image/example_2.png")
mask_image = load_image("https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/mask/example_2.png")
example_image = load_image("https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/reference/example_2.jpg")

# ダウンロードした画像をそれぞれ 512 x 512 へリサイズしておきます
resize_size = (512, 512)
init_image = init_image.resize(resize_size)
mask_image = mask_image.resize(resize_size)
example_image = example_image.resize(resize_size)

image_grid([init_image, mask_image, example_image], rows=1, cols=3)
../_images/26a3921ea64d156d8cb40d7a5126be75f38801800f763691773bc307605de421.png

同様にパイプラインに対して、元画像 init_image、マスク画像 mask_image、参照画像 example_image を渡して画像を編集してみます。

edited_image = pipe(
    image=init_image,
    mask_image=mask_image,
    example_image=example_image,
).images[0]

image_grid([init_image, mask_image, edited_image], rows=1, cols=3)
../_images/54fc42ae39a27ee6263625608752571a5e93abf068a3f727ec9beaa65ea30c8f.png

以上のようにして、黒いわんちゃんの部分がねこちゃんへと編集することができました。